在这项最新研究中,张锋团队首先选定了eCIS的一个亚型——Photorhabdus virulence cassette(PVC)。PVC由一个约20kb的操纵子组成,包含16个核心基因(pvc1-16),以及下游的有效载荷Pdp1和Pnf。研究团队发现,PVC有效载荷蛋白的N端高度无序区域是其“包装结构域”,只要将其与想要递送的蛋白(例如GFP)融合,就能将其加载到PVC复合体中。
图1. PVC系统可以被重新编程以在真核细胞中定制蛋白递送
值得注意的是,除了N端高度无序区域之外,Pvc13(尾纤维蛋白)和Pvc15(一种ATP酶)也是该递送系统成功的关键。其中,Pvc13可能参与了PVC复合体的靶标识别,并可用于操纵PVC复合体的靶标特异性。
基于此,研究团队使用AlphaFold预测Pvc13的三维结构,当将其作为三聚体时,Pvc13的C端形成了一个预测的螺旋管结构和一个球状的尖端结合结构域。研究团队由此假设,改变Pvc13的这个尖端结合域的结构特征可能会导致PVC的靶向性发生可预测的变化。
图2. AlphaFold预测和改造Pvc13,以改变PVC系统的宿主细胞靶向性
这些结果表明,Pvc13是PVC复合体的一个靶向性决定元件,该蛋白可以被修饰,从而靶向特定的细胞系。
图3. PVC介导的蛋白递送具有高度特异性
张锋团队还发现,PVC治疗没有产生任何显著的免疫细胞激活、炎症细胞因子产生、体重损失或细胞毒性,这表明PVC治疗在实验过程中没有产生免疫原性或毒性。此外,PVC治疗七天后就无法从小鼠大脑中检测到PVC相关蛋白,这表明PVC递送系统仅在大脑中短暂停留,不会持续太长时间。
图5. 重编程的PVC系统在小鼠体内实现靶向递送
https://www.nature.com/articles/s41586-023-05870-7
相关阅读
人工智能AlphaFold助力,改造出全新蛋白质定向递送系统